\(\int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\) [369]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [C] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 113 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {2 \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}} \]

[Out]

-arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)*cos(d*x+c)^(1/2)*sec(d
*x+c)^(1/2)/d/a^(1/2)+2*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4307, 2858, 12, 2861, 211} \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}-\frac {\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{\sqrt {a} d} \]

[In]

Int[Sec[c + d*x]^(3/2)/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

-((Sqrt[2]*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c + d
*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d)) + (2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2858

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] - Dist[
1/(2*b*(n + 1)*(c^2 - d^2)), Int[(c + d*Sin[e + f*x])^(n + 1)*(Simp[a*d - 2*b*c*(n + 1) + b*d*(2*n + 3)*Sin[e
+ f*x], x]/Sqrt[a + b*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
 b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 4307

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx \\ & = \frac {2 \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {a}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{a} \\ & = \frac {2 \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}-\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx \\ & = \frac {2 \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}+\frac {\left (2 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{d} \\ & = -\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}+\frac {2 \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 1.54 (sec) , antiderivative size = 180, normalized size of antiderivative = 1.59 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 \cos \left (\frac {1}{2} (c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x) \sin \left (\frac {1}{2} (c+d x)\right ) \left (\frac {1}{2} \cos (c+d x) (2+\cos (c+d x)) \csc ^4\left (\frac {1}{2} (c+d x)\right ) \left (1-\cos (c+d x)+\text {arctanh}\left (\sqrt {-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )}\right ) \cos (c+d x) \sqrt {2-2 \sec (c+d x)}\right )-\frac {1}{10} \operatorname {Hypergeometric2F1}\left (2,\frac {5}{2},\frac {7}{2},-\sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin (c+d x) \tan (c+d x)\right )}{d \sqrt {a (1+\cos (c+d x))}} \]

[In]

Integrate[Sec[c + d*x]^(3/2)/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(2*Cos[(c + d*x)/2]*Sec[c + d*x]^(3/2)*Sin[(c + d*x)/2]*((Cos[c + d*x]*(2 + Cos[c + d*x])*Csc[(c + d*x)/2]^4*(
1 - Cos[c + d*x] + ArcTanh[Sqrt[-(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]]*Cos[c + d*x]*Sqrt[2 - 2*Sec[c + d*x]]))/2
 - (Hypergeometric2F1[2, 5/2, 7/2, -(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]*Sin[c + d*x]*Tan[c + d*x])/10))/(d*Sqrt
[a*(1 + Cos[c + d*x])])

Maple [A] (verified)

Time = 6.07 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.20

method result size
default \(\frac {\left (\sec ^{\frac {3}{2}}\left (d x +c \right )\right ) \left (\cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+\sqrt {2}\, \sin \left (d x +c \right )+\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \cos \left (d x +c \right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {2}}{d \left (1+\cos \left (d x +c \right )\right ) a}\) \(136\)

[In]

int(sec(d*x+c)^(3/2)/(a+cos(d*x+c)*a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*sec(d*x+c)^(3/2)*(cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))+2^(1/2)*sin(d
*x+c)+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c)))*cos(d*x+c)*(a*(1+cos(d*x+c)))^(1/2)/(1+
cos(d*x+c))*2^(1/2)/a

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.87 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\frac {\sqrt {2} {\left (a \cos \left (d x + c\right ) + a\right )} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}} + \frac {2 \, \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{a d \cos \left (d x + c\right ) + a d} \]

[In]

integrate(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

(sqrt(2)*(a*cos(d*x + c) + a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c)
))/sqrt(a) + 2*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) + a*d)

Sympy [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {\sec ^{\frac {3}{2}}{\left (c + d x \right )}}{\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )}}\, dx \]

[In]

integrate(sec(d*x+c)**(3/2)/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral(sec(c + d*x)**(3/2)/sqrt(a*(cos(c + d*x) + 1)), x)

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.58 (sec) , antiderivative size = 665, normalized size of antiderivative = 5.88 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {2 \, \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) \sin \left (d x + c\right ) - 2 \, {\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) + 1\right )\right ) - \sqrt {2} {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \arctan \left (\frac {{\left ({\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{4} + \cos \left (d x + c\right )^{4} + \sin \left (d x + c\right )^{4} + 2 \, {\left (\cos \left (d x + c\right )^{2} - \sin \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} {\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2} - 4 \, \cos \left (d x + c\right )^{3} + 2 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )^{2} + 6 \, \cos \left (d x + c\right )^{2} - 4 \, \cos \left (d x + c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\frac {2 \, {\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}{{\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2}}, \frac {{\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2} + \cos \left (d x + c\right )^{2} - \sin \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1}{{\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2}}\right )\right ) + \sin \left (d x + c\right )}{{\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}}, \frac {{\left ({\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{4} + \cos \left (d x + c\right )^{4} + \sin \left (d x + c\right )^{4} + 2 \, {\left (\cos \left (d x + c\right )^{2} - \sin \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} {\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2} - 4 \, \cos \left (d x + c\right )^{3} + 2 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right )^{2} + 6 \, \cos \left (d x + c\right )^{2} - 4 \, \cos \left (d x + c\right ) + 1\right )}^{\frac {1}{4}} \sqrt {a} \cos \left (\frac {1}{2} \, \arctan \left (\frac {2 \, {\left (\cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}{{\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2}}, \frac {{\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2} + \cos \left (d x + c\right )^{2} - \sin \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) + 1}{{\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}^{2}}\right )\right ) + \sqrt {a} \cos \left (d x + c\right ) - \sqrt {a}}{\sqrt {a} {\left | e^{\left (i \, d x + i \, c\right )} + 1 \right |}}\right )}{{\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sqrt {a} d} \]

[In]

integrate(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

(2*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - 2*(cos(d*x + c) - 1)*sin(1/2*arctan
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - sqrt(2)*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x +
2*c) + 1)^(1/4)*arctan2(((abs(e^(I*d*x + I*c) + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c)^2 - s
in(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I*d*x + I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d*x + c)^2 - 2*cos(
d*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c)^2 - 4*cos(d*x + c) + 1)^(1/4)*sin(1/2*arctan2(2*(cos(d*x + c) -
1)*sin(d*x + c)/abs(e^(I*d*x + I*c) + 1)^2, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2*
cos(d*x + c) + 1)/abs(e^(I*d*x + I*c) + 1)^2)) + sin(d*x + c))/abs(e^(I*d*x + I*c) + 1), ((abs(e^(I*d*x + I*c)
 + 1)^4 + cos(d*x + c)^4 + sin(d*x + c)^4 + 2*(cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)*abs(e^(I*
d*x + I*c) + 1)^2 - 4*cos(d*x + c)^3 + 2*(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)*sin(d*x + c)^2 + 6*cos(d*x + c)
^2 - 4*cos(d*x + c) + 1)^(1/4)*sqrt(a)*cos(1/2*arctan2(2*(cos(d*x + c) - 1)*sin(d*x + c)/abs(e^(I*d*x + I*c) +
 1)^2, (abs(e^(I*d*x + I*c) + 1)^2 + cos(d*x + c)^2 - sin(d*x + c)^2 - 2*cos(d*x + c) + 1)/abs(e^(I*d*x + I*c)
 + 1)^2)) + sqrt(a)*cos(d*x + c) - sqrt(a))/(sqrt(a)*abs(e^(I*d*x + I*c) + 1))))/((cos(2*d*x + 2*c)^2 + sin(2*
d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a)*d)

Giac [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{\sqrt {a \cos \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(3/2)/sqrt(a*cos(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((1/cos(c + d*x))^(3/2)/(a + a*cos(c + d*x))^(1/2),x)

[Out]

int((1/cos(c + d*x))^(3/2)/(a + a*cos(c + d*x))^(1/2), x)